
All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

1

CTFPND Supplementary
APIs

Serial port access

Package installation

To install a package

To get the installation status through BroadcastReceiver

To delete a package

Power management

Cradle detection

Notification blocker

Additional IOs

Ignition signal

Programmatic firmware upgrade and configuration

Accepted image name patterns

Through image copy

From the command line

From application code

Serial port access
Depending on the device, one or two serial ports are available for the application. In addition,
some cradles provide extra serial ports that are also accessible from application level.

The interface follows the standard Linux tty model (access through /dev/xxx_tty and
configuration through stty().)

● /dev/user_external_tty
RS232 type uart
availability : all devices with a pogo pin connector.

● /dev/user_tty
No longer used in recent devices

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

2

voltage is TTL 3.3V
availability : older devices with 10-pin USB-B connector

● /dev/cradle_rs485
 RS485 type uart
 availability : with cradle that provide rs485 interface

● /dev/cradle_rs232
RS232 type uart
availability : with cradle that provide an extra rs232 interface

Package installation
The devices include a PackageInstallerProxy service that allows package installation and
removal without extra permission.

An example application with source code is in file “TestInstallerProxy”

The interface uses Android Intents.

To install a package
Optionally, all runtime permissions can be granted by default, i.e. the end user will not be
prompted for the permissions.

public static final String GRANT_PERMISSION_KEY = "grant_permission";

Uri data = Uri.fromFile(<apk_file_to_install>);

Intent intent = new Intent(ACTION_INSTALL, data); intent.setComponent(PROXY);

// This option is needed to grant the permissions

intent.putExtra(GRANT_PERMISSION_KEY, true);

startService(intent);

To get the installation status through
BroadcastReceiver
private final int CALLBACK_ID = Process.myTid(); // any arbitrary number will do

Uri data = Uri.fromFile(<apk_file_to_install>);

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

3

Intent intent = new Intent(ACTION_INSTALL, data); intent.setComponent(PROXY);

// need to add extra CALLBACK_ID in order to recive the notifications

intent.putExtra(CALLBACK_ID_KEY, CALLBACK_ID); startService(intent);

private final BroadcastReceiver CALLBACK_RECEIVER = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

final String ACTION = intent.getAction();

Log.d(TAG, "onReceive : " + ACTION);

final int ID = intent.getIntExtra(CALLBACK_ID_KEY,-1);

if(ID == CALLBACK_ID) {

String pkg_name = intent.getStringExtra(PACKAGE_NAME_KEY);

int status = intent.getIntExtra(INSTALL_STATUS_KEY,

STATUS_FAILURE);

String msg = intent.getStringExtra(INSTALL_MSG_KEY);

Log.d(TAG, ACTION + " for " + pkg_name + " , status : " + status +

" , msg : " + msg);

}

}

};

IntentFilter filter = new IntentFilter();

filter.addAction(ACTION_INSTALL_CBK);

filter.addAction(ACTION_REMOVE_CBK); registerReceiver(CALLBACK_RECEIVER, filter);

unregisterReceiver(CALLBACK_RECEIVER);

To delete a package
private static final String ACTION_REMOVE =

"hk.topicon.utility.packageinstallerproxy.REMOVE";

Intent intent = new Intent(ACTION_REMOVE);

intent.setComponent(PROXY);

// <pkg_name> is for instance com.example.my_package

intent.putExtra(PACKAGE_NAME_KEY, <pkg_name>);

startService(intent);

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

4

Power management
Example in “PowerProxyTest” file.

We provide an interface to power off the device, reboot it and enter sleep mode without extra
permission, through Android Intents.
The helper application PowerProxy.apk needs to be installed on the device as a system
package (i.e. installed through perso.)

private static final String ACTION_POWER_OFF = "com.utility.powerproxy.POWER_OFF";

private static final String ACTION_REBOOT = "com.utility.powerproxy.REBOOT"; private

static final String ACTION_SLEEP = "com.utility.powerproxy.SLEEP";

/* since API level 12, defined as Intent.FLAG_INCLUDE_STOPPED_PACKAGES */

/* we need to redefined it here for API level 8 */

public static final int FLAG_INCLUDE_STOPPED_PACKAGES = 0x00000020;

/* since API level 29, FLAG_RECEIVER_INCLUDE_BACKGROUND is needed */

/* we need to redefined it here for API level 8 */

public static final int FLAG_RECEIVER_INCLUDE_BACKGROUND = 0x01000000;

public void sleep() {

Intent intent = new Intent(ACTION_SLEEP);

intent.addFlags(FLAG_INCLUDE_STOPPED_PACKAGES);

intent.addFlags(FLAG_RECEIVER_INCLUDE_BACKGROUND);

mContext.sendBroadcast(intent);

}

public void power_off() {

Intent intent = new Intent(ACTION_POWER_OFF);

intent.addFlags(FLAG_INCLUDE_STOPPED_PACKAGES);

intent.addFlags(FLAG_RECEIVER_INCLUDE_BACKGROUND);

mContext.sendBroadcast(intent);

}

public void reboot() {

Intent intent = new Intent(ACTION_REBOOT);

intent.addFlags(FLAG_INCLUDE_STOPPED_PACKAGES);

intent.addFlags(FLAG_RECEIVER_INCLUDE_BACKGROUND);

mContext.sendBroadcast(intent);

}

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

5

Cradle detection
Only available on CTFPND-11B, CTFPND-12B.

Example in “TestDock” file.

The interface is similar to Intent.ACTION_DOCK_EVENT of the Android API, but we are using a
different action name (ACTION_DOCK_EVENT itself could not be used, as it triggers a lot of
default reactions from the system and the applications.)

private static final String ACTION_TOPICON_DOCK_EVENT =

"hk.topicon.intent.action.ACTION_DOCK_EVENT";

IntentFilter intentFilter = new IntentFilter();

intentFilter.addAction(ACTION_TOPICON_DOCK_EVENT); registerReceiver(DOCK_RECEIVER,

intentFilter);

private static final String ACTION_TOPICON_DOCK_EVENT =

"hk.topicon.intent.action.ACTION_DOCK_EVENT";

private final BroadcastReceiver DOCK_RECEIVER = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

Log.d(TAG, "onReceive");

if(intent != null) {

Log.d(TAG, "action : " + intent.getAction() + " , is plugged : " +

intent.getIntExtra(Intent.EXTRA_DOCK_STATE,

Intent.EXTRA_DOCK_STATE_UNDOCKED));

}

}

};

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

6

Notification blocker
We provide an API to block application notifications programmatically.

Note: by default the notification blocker server is not installed. Install
NotificationBlocker_android_9.apk, then it must be added through perso (as system permissions
are needed.)

private static final String BLOCK_ACTION =

"hk.topicon.utility.notificationblocker.BLOCK_NOTIFICATION";

private static final String EXTRA_APP_PACKAGE = "package";

private static final String EXTRA_APP_BANNED = "banned";

Intent intent = new Intent(BLOCK_ACTION);

intent.putExtra(EXTRA_APP_PACKAGE, <target_pkg_name>);

intent.putExtra(EXTRA_APP_BANNED, true);

mContext.sendBroadcast(intent);

Additional IOs

Ignition signal
Availability : 6” PND and all devices with pogo pin connector

The ignition pin status is broadcasted as a sticky intent (i.e. the current status is reported
immediately when the application registers a listener.)

private static final String ACTION_IGNITION = "hk.topicon.intent.action.IGNITION";

private static final String EXTRA_STATE = "state";

IntentFilter intentFilter = new IntentFilter();

intentFilter.addAction(ACTION_IGNITION);

registerReceiver(IGNITION_RECEIVER, intentFilter);

private final BroadcastReceiver IGNITION_RECEIVER = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

7

Log.d(TAG, "onReceive");

if(intent != null) {

Log.d(TAG, "action : " + intent.getAction() + " , is on : " +

intent.getBooleanExtra(EXTRA_STATE, false));

}

}

};

Programmatic firmware upgrade and
configuration
Most of these features have been supported on all devices, meanwhile the API described below
is only official since Android 12. For earlier devices there are some variations in the action name
and flags to use.

Accepted image name patterns

● "update_config_xxx.zip" will be recognized as a configuration image
● for compatibility purpose, a directory (not a file) called "perso" will also be accepted as a

configuration image (the content of this directory being the unzipped version of
update_config_xxx.zip)

● "update_xxx.zip" will be recognized as an upgrade image

In addition, in case of a configuration image, a file called "force_clean" put in the same directory
as the image will trigger a factory reset after the new configuration is applied.

Through image copy
Copying a file called update_xxx.zip at the root of the internal storage (i.e. /sdcard or
/storage/emulated/0/) will automatically start the upgrade process, or configuration process if the
file is called update_config_xxx.zip.

Note : the upgrade is triggered when the file was opened for writing, then closed, then the
system checks the name and content. So it will not work if you first copy the file under another
name, like vendor_update_xxx.zip, then rename it.

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

8

From the command line

The following command can be used to trigger upgrade or configuration from a file already
present in the device:

�FILE=/sdcard/update_xxx.zip

UPGRADE_INTENT=hk.topicon.upgradefw.UPDATE

this upgrade intent is also accepted but only when used from the command line

#UPGRADE_INTENT=com.utility.updatemanager.UPDATE

$> am broadcast --receiver-include-background -a $UPGRADE_INTENT "file://"${FILE}

�

From application code

�import android.content.Intent;

import android.net.Uri;

import java.io.File;

private static final String UPGRADE_IMG = "/sdcard/update_test.zip";

// from application code, only this intent action will be accepted

private static final String UPGRADE_ACTION = "hk.topicon.upgradefw.UPDATE";

File img = new File(UPGRADE_IMG);

Intent i = new Intent(UPGRADE_ACTION);

i.setData(Uri.fromFile(img));

sendBroadcast(i);

�

Apply a configuration on Android 9 and older devices

The configuration needs to be applied at the same time as a firmware update.

● Create a directory /sdcard/updater on the device
● put the perso content inside it (so for instance there will be

/sdcard/updater/perso/my_app.apk)
● Then launch a firmware upgrade using an update_xxx.zip image as described above.

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

9

Note that if you want to keep the same firmware you can upgrade using the same firmware as
the one already on the device.

Access external storage on Android 11+ devices

External storage (so-called "internal SD card") typically stores the user's documents and image,
and is used as a shared directory for the applications.
It is called /sdcard for historical reasons (in early android devices it was actually an SD card
typically plugged below the battery.)

To access the directory /sdcard on Android 11+, the permission
MANAGE_EXTERNAL_STORAGE must be declared in the application's AndroidManifest.xml.
For Android 11 and 12, WRITE_MEDIA_STORAGE must also be requested for write access.

�<uses-permission android:name="android.permission.WRITE_MEDIA_STORAGE" />

<uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE" />

�
These permissions will be granted to perso apps.

After the permissions are granted, normal file access can be used :

�

 private void list_sdcard_content() {

 File sd_root_dir = new File("/sdcard");

 for(File f: sd_root_dir.listFiles()) {

 Log.d(TAG, f.toString());

 }

 }

 private void test_sdcard_write() {

 File test_write = new File("/sdcard", "test_file");

 try {

 test_write.createNewFile();

 } catch(Exception e) {

 Log.e(TAG, "error while creating the test file : " + e);

 }

}

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

10

�

Accessing the SD card on Android 11+ devices

Accessing the SD card can be done through the StorageManger API. The permission
MANAGE_EXTERNAL_STORAGE must be declared in the application's AndroidManifest.xml,
and WRITE_MEDIA_STORAGE must also be requested for write access.

�<uses-permission android:name="android.permission.WRITE_MEDIA_STORAGE" />

<uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE" />

�
Both of these permissions are granted automatically to applications installed through perso.

�import android.os.storage.StorageVolume;

import android.os.storage.StorageManager;

import android.os.storage.StorageManager.StorageVolumeCallback;

...

 private static StorageManager mStorageManager;

 private final StorageVolumeCallback STORE_CBK =

 new StorageVolumeCallback() {

 public void onStateChanged (StorageVolume volume)

 {

 Log.d(TAG, "onStateChanged for " + volume);

 list_sd_content();

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 ...

 mStorageManager = (StorageManager) getSystemService(STORAGE_SERVICE);

 }

 @Override

 protected void onResume() {

 super.onResume();

 Log.d(TAG, "onResume");

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

11

 mStorageManager.registerStorageVolumeCallback

 (getMainExecutor(), STORE_CBK);

 //test_sd_write();

 list_sd_content();

 }

 @Override

 protected void onPause() {

 Log.d(TAG, "onPause");

 mStorageManager.unregisterStorageVolumeCallback(STORE_CBK);

 super.onPause();

 }

 // can be called multiple times

 private void list_sd_content() {

 File sd_root_dir = get_sd_card();

 if(sd_root_dir == null) {

 Log.d(TAG, "SD card removed");

 return;

 } else if(sd_root_dir != null) {

 Log.d(TAG, "SD card inserted : " + sd_root_dir);

 for(File f: sd_root_dir.listFiles()) {

 Log.d(TAG, f.toString());

 }

 }

 }

 private void test_sd_write() {

 File sd_root_dir = get_sd_card();

 if(sd_root_dir == null) {

 Log.d(TAG, "SD card not found");

 return;

 }

 File test_write = new File(sd_root_dir, "test_file");

 try {

 test_write.createNewFile();

 } catch(Exception e) {

 Log.e(TAG, "error while creating the test file : " + e);

 }

All rights reserved. No part of this work may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying,
recording, recording taping, or information and retrieval systems) without the written permission of the copyright owner

12

 }

 private File get_sd_card() {

 File ret = null;

 for(StorageVolume vol : mStorageManager.getStorageVolumes()) {

 Log.d(TAG, "detected volume : " + vol);

 if(vol != null && vol.isRemovable() && !vol.isPrimary()) {

 if(vol.getDescription(this).toLowerCase().contains("usb")) {

 Log.d(TAG, "volume " + vol + " is a USB volume, don't " +

 "report it as SD card");

 continue;

 }

 ret = vol.getDirectory();

 break;

 }

 }

 return ret;

 }

�

